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Abstract: We introduce HOMER, an imitation learning framework for mobile
manipulation that combines whole-body control with hybrid action modes that
handle both long-range and fine-grained motion, enabling effective performance
on realistic in-the-wild tasks. At its core is a fast, kinematics-based whole-body
controller that maps desired end-effector poses to coordinated motion across the
mobile base and arm. Within this reduced end-effector action space, HOMER
learns to switch between absolute pose predictions for long-range movement and
relative pose predictions for fine-grained manipulation, offloading low-level coor-
dination to the controller and focusing learning on task-level decisions. We deploy
HOMER on a holonomic mobile manipulator with a 7-DoF arm in a real home.
We compare HOMER to baselines without hybrid actions or whole-body control
across 3 simulated and 3 real household tasks such as opening cabinets, sweeping
trash, and rearranging pillows. Across tasks, HOMER achieves an overall success
rate of 79.17% using just 20 demonstrations per task, outperforming the next
best baseline by 29.17% on average. HOMER is also compatible with vision-
language models and can leverage their internet-scale priors to better generalize
to novel object appearances, layouts, and cluttered scenes. In summary, HOMER
moves beyond tabletop settings and demonstrates a scalable path toward sample-
efficient, generalizable manipulation in everyday indoor spaces. Code, videos,
and supplementary material are available at: http://homer-manip.github.io.
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Fig. 1. HOMER. Left: A demonstrator uses whole-body iPhone teleoperation to collect data with a mobile
manipulator in a real home. Right: From these collected demonstrations, HOMER learns a hybrid imitation
learning policy that switches between absolute actions for reaching, and relative actions for fine manipulation.
A whole-body controller maps these end-effector commands to arm and base joint commands for execution.

1 Introduction
To unlock the full potential of robots, we must move beyond controlled lab spaces and into the
diverse, unstructured environments of everyday life. Unlike stationary tabletop robots, which lack
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the mobility to perform the wide range of tasks found in homes, offices, and warehouses, mobile
manipulators are capable of navigating and interacting in these human-centric spaces. Tasks like
watering a row of plants, wiping a spill on a long table, or moving to open a cabinet (Fig. 1) require
not only precision, but also manipulation and mobility working hand-in-hand.

Modern mobile embodiments such as wheeled base-arm platforms [1–8], humanoids [9–17], and
quadrupeds [18–22] enable robots to operate beyond fixed workspaces. However, these embod-
iments introduce significant control complexity. In particular, they require careful coordination
between the base and arm in wheeled embodiments, or the limbs and torso in legged systems.
One common approach to managing this complexity is to use whole-body controllers (WBCs),
which map high-level end-effector commands to coordinated whole-body motion using analytical
or learning-based approaches. Prior work on WBCs has focused primarily on quadrupeds [23–26],
where achieving balance and stability requires learning WBCs from scratch with extensive reward
shaping and sim-to-real transfer techniques, often tailored to the dynamics of legged robots. Further-
more, real-world tasks are naturally multi-phase, combining long-range movements (e.g., reaching
or repositioning) with fine-grained local manipulation of objects.

On the policy learning side, recent imitation learning (IL) methods [27–29] have shown the benefits
of hybrid action spaces, although their application has been restricted to tabletop domains. These
policies typically learn to alternate between predicting (1) keypose actions (6 DoF absolute end-
effector poses, equivalently referred to as waypoint [27–29] or keyframe [30, 31] actions) for long-
range movement and (2) dense actions (i.e., delta end-effector actions) for fine-grained interactions.
While these approaches achieve strong performance and generalization from limited demonstrations
in tabletop settings, they have not been introduced in the mobile manipulation space with greater
embodiment complexity, larger workspaces, and longer task horizons.

Our key insight is that scalable mobile manipulation requires not only an effective strategy for man-
aging control complexity, but also a means of generalizing to novel scenarios. As mobile robots
move through diverse human environments, they are exposed to far greater variability in objects,
spatial configurations, and task conditions than static arms. To address both challenges, we pro-
pose HOMER: Hybrid whole-body policies for Mobile Robots. HOMER (Fig. 1) combines a fast,
kinematics-based whole-body controller (which maps end-effector actions to coordinated base-arm
motion) with a hybrid IL policy that switches between keypose predictions for long-range move-
ment and dense delta actions for fine-grained manipulation. This structured approach addresses
high-dimensional control and multi-phase execution. Additionally, we show that HOMER is mod-
ular enough to incorporate task-relevant keypoints derived from vision-language models (VLMs),
providing a path towards improved generalization in unfamiliar environments.

We deploy HOMER in a real home environment and evaluate it on a suite of challenging mobile
manipulation tasks that reflect everyday household demands. Overall, our contributions are:

1. A sample-efficient imitation learning framework for mobile manipulation that lever-
ages WBC and hybrid action representations to outperform strong non-hybrid and non-
WBC baselines using only 20 demonstrations per task.

2. A modular policy architecture that can be conditioned on VLM keypoints, enabling
generalization to novel object geometries, appearances, and cluttered environments.

3. A practical whole-body controller that supports intuitive teleoperation, facilitating ef-
ficient demonstration collection in real household settings.

2 Related Work
Mobile Manipulation and Control. Legged platforms typically focus on navigation across di-
verse terrains (e.g., with Boston Dynamics Spot [21] and ANYmal [32] quadrupeds). A few recent
works equip quadrupeds with lightweight arms and develop whole-body controllers, utilizing either
model-based motion planning (e.g., RoLoMa [33]) or learning-based manipulation policies (e.g.,
DeepWBC [24], Visual WBC [25], UMI-on-Legs [23]). Our work draws inspiration from these
works, but our framework is agnostic to the exact implementation of the WBC (e.g., inverse kine-
matics (IK) or learning-based). In our work, we use a task-agnostic IK-based WBC that is reusable
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across many scenarios. Furthermore, in contrast to these prior works, we learn policies with hy-
brid action modes to encourage both spatial generalization and precision. More recently, humanoid
research has advanced rapidly, with most efforts centered on whole-body control for expressive be-
haviors such as dancing, walking, or jumping [10, 11]. Although some humanoid systems perform
manipulation, they often rely on using high-dimensional joint-space actions (e.g., 50+ DoF for Hu-
manPlus [12]) for imitation learning. In contrast, our work adopts a whole-body control strategy
with hybrid action modes to enable more tractable learning.

Wheeled platforms consist of a wheeled mobile base with onboard arms, and include examples like
TidyBot [1], TidyBot++ [2], mobile Franka Pandas [4–6], the Fetch robot [7], the HSR [8], Mobile
Aloha [34], and the Everyday Robot [35]. Although these embodiments are physically capable of
performing many mobile manipulation tasks, they typically assume decoupled control of the base
and arm. Having to switch between different movement modes adds complexity to teleoperation,
and often requires the use of ad hoc and task-specific strategies.

A variety of other works study navigation with legged or wheeled embodiments [36–38]. Our work
is different and complementary in that we focus on the “last mile” of manipulation, where mobility
is necessary for task completion, but not at the scale or complexity of full-scene navigation.

Visual Imitation Learning. Visual imitation learning (IL) refers to learning from demonstrations
using visual observations [39–41], with recent methods exploring various alternatives for action
granularity and input/output space structure.

Dense policies, such as Diffusion Policy [42], ACT [43], or Visual-Language-Action (VLA) models
(Gemini [44], π0 [45], RT-X [46], OpenVLA [47], Octo [48]) predict low-level actions (e.g., 6-
DoF deltas or joint velocities) at every timestep. While effective for reactive manipulation, dense
policies struggle with long-horizon tasks and spatial generalization, since even simple movements
like reaching can involve hundreds of consecutive actions.

Keypose-based policies, such as PerAct [30], RVT/RVT-2 [49, 50], and KITE [51], predict 6-DoF
end-effector poses that are executed via low-level controllers or motion planners. While sample-
efficient, these keypose actions can be too sparse to handle precise or reactive control.

Recently proposed hybrid policies combine keypose and dense actions for both long-range and pre-
cise local manipulation. Hydra [29] and AWE [28] use keypose and/or dense actions but rely solely
on images, limiting spatial generalization. SPHINX [27], most similar to our approach, uses images
and point clouds with learned attention to task-relevant keypoints to switch between modes. Criti-
cally, all these methods are limited to static, tabletop-mounted manipulators. We extend SPHINX
to the mobile manipulation setting by incorporating whole-body control, enabling mobility while
retaining an end-effector–centric action space. We further support optional conditioning on object
keypoints from VLMs, allowing generalization to unseen objects in clutter.

3 HOMER: HYBRID WHOLE-BODY POLICIES FOR MOBILE ROBOTS
In the following sections, we describe HOMER (Fig. 2), our imitation learning framework for mo-
bile manipulation in the wild. Section 3.1 formalizes the problem setup. Section 3.2 presents a
kinematics-based whole-body controller (WBC) that enables control in a simplified end-effector ac-
tion space. Finally, Section 3.3 describes our hybrid imitation learning (IL) agent, which maps point
clouds and RGB image inputs to hybrid actions for both long-range and fine-grained manipulation.

3.1 Problem Formulation
We consider a mobile manipulator composed of a holonomic mobile base and an N -DoF robotic
arm, with joint configuration qt = (qbase

t ,qarm
t ) ∈ R3+N , where qbase

t = (x, y, θ) ∈ SE(2)
represents the base pose, and qarm

t ∈ RN represents the arm joints.

At each timestep t, an observation ot =
(
qt, gt, {Ikt ,Dk

t }Kk=1

)
includes the joint configuration qt,

gripper state gt∈R, and RGB-D images from K cameras (with at least one wrist-mounted and one
third-person view). To get 3D point clouds, we assume known camera intrinsics and extrinsics.

Rather than learning actions directly in joint space, our goal is to train an imitation learning (IL)
policy π(ot) = (xee

t+1, gt+1) that predicts a 6-DoF end-effector target pose xee
t+1∈SE(3), which can
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Fig. 2. HOMER Policy Architecture: HOMER consists of a dense policy that uses RGB images to predict
relative actions for fine-grained manipulation, and a keypose policy that uses point clouds to predict absolute
end-effector poses for long-range motion. Each policy also predicts the next control mode, enabling learned
transitions. Optionally, the keypose policy can be conditioned on externally provided salient points derived
from a VLM to support dynamic goal specification (HOMER-COND). Finally, a whole-body controller (WBC)
converts predicted end-effector actions into joint commands for the mobile base and arm.

then be executed by a whole-body controller (WBC). With this formulation, the IL policy reasons in
task space while delegating low-level control and embodiment-specific constraints to the WBC.

3.2 Whole-Body Controller
We implement a kinematics-based WBC that maps high-level end-effector poses into joint position
commands for the full embodiment, delegating joint-space coordination, constraints, and redun-
dancy resolution to the controller rather than the IL agent. Though HOMER is agnostic to the exact
WBC implementation, ours is based on MuJoCo [52] and the mink IK library [53].

Formally, the WBC is a mapping W :SE(3) → R3+N from a desired end-effector pose xee∈SE(3)
to a joint position command q ∈ R3+N for the mobile base and arm. We implement an IK solver
based on iterative IK that finds q minimizing the pose error. To compute a velocity that moves the
end-effector toward xee, we define a pose error as a body-frame twist [54]:

eee = log
(
(xee

t )
−1xee) ,

where xee
t ∈ SE(3) is the current end-effector pose from forward kinematics. The geometric Jaco-

bian Jee(qt) ∈ R6×(3+N) maps joint velocities to the induced end-effector twist. At each iteration,
the IK solver finds q̇ that minimizes the discrepancy between the Jacobian-induced twist and eee,
moving the end-effector toward the desired pose. Specifically, the IK solver optimizes the following:

min
q̇

∥Jee(qt)q̇− eee∥2Wee
+ ∥qt + q̇ ·∆t− qretract∥2Wposture

+
∥∥q̇base∥∥2

Wdamping

s.t. q̇min ≤ q̇ ≤ q̇max (a) Joint velocity limits (1a)
qmin ≤ qt + q̇ ·∆t ≤ qmax (b) Joint position limits (1b)

− n⊤
i Ji(qt)q̇ ≤ γ(di − dmin)

∆t
+ ϵ︸ ︷︷ ︸

collision margin

, ∀i ∈ C (c) Collision avoidance (1c)

Objective: The first term encourages the solved joint motion to move towards the target pose xee.
The second term encourages the joint configuration qt + q̇ · ∆t to stay close to a neutral resting
posture qretract ∈ R3+N , shown in Fig. 3. The third term damps the motion of the base. Weights
Wee, Wposture, and Wdamping specify the influence of each term.
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Fig. 3. Hardware: We use the TidyBot++
holonomic mobile manipulator [2] with two
base cameras and a wrist-mounted fisheye
camera. An onboard NUC handles real-time
control, and an onboard GPU laptop runs pol-
icy inference.

Constraints: The optimization is subject to constraints
that ensure safe and feasible execution. We impose
joint velocity Eq. (1a) and position limits Eq. (1b),
q̇min ≤ q̇ ≤ q̇max and qmin ≤ qt + q̇ · ∆t ≤ qmax,
to satisfy hardware bounds. In constraint Eq. (1c),
we enforce velocity-based collision avoidance between
selected pairs of robot components, each modeled as
geometric primitives (geoms) in the MuJoCo simula-
tor [52]. For each pair i ∈ C, we identify the closest
points between geoms and compute the signed distance
di, the contact normal ni, and the Jacobian Ji of the
contact point with respect to joint motion. The con-
straint aims to slow the robot’s motion as the clearance
di between geoms approaches a minimum threshold, ef-
fectively acting as a velocity damper. In our setup, C in-
cludes the (arm, base) and (arm, camera mount) pairs,
where the camera mounts are represented as cylinders.

The IK solver iteratively integrates the optimized joint
velocities using a fixed timestep ∆t to obtain the final
joint position command: qt+1 = qt + q̇ · ∆t. The
joint position commands are subsequently executed on
hardware using low-level controllers. All WBC hyperparameters are given in Appendix A. These
values are held constant and reused across all tasks without any per-task retuning.

3.3 Hybrid Imitation Learning Agent

Built on the WBC’s end-effector control space, our hybrid imitation learning (IL) agent consists
of two sub-policies: a keypose sub-policy for long-range motion and a dense sub-policy for fine-
grained manipulation. Each sub-policy predicts both the next end-effector action and next control
mode mt+1 ∈ {keypose, dense, terminate}, indicating the sub-policy choice for the next action.

Teleoperation. We collect data for HOMER using the iPhone-based interface from [2], which
streams the phone’s real-time 6-DoF pose via the WebXR API and maps it to the robot’s end-effector.
Gripper commands are issued through swipe gestures. The WBC from Section 3.2 solves for joint-
space actions at each timestep. We record observations and actions at 10 Hz during teleoperation.

Keypose Sub-policy. The keypose sub-policy πkeypose handles long-range movements such as
reaching, where predicting an absolute end-effector pose provides greater stability than step-wise
deltas. It takes as input a third-person point cloud Pt ⊂ R3, constructed by deprojecting RGB-D
images using known intrinsics and extrinsics, and outputs a 6-DoF end-effector pose xee, gripper
state gt+1, and next control mode mt+1. Following SPHINX [27], we avoid directly regressing the
target end-effector pose. Instead, the policy predicts per-point saliency probabilities over the input
cloud and per-point 3D offsets to the ground-truth end-effector position. The point with the high-
est saliency defines the salient point—a task-relevant 3D location such as a keypoint on a cabinet
handle (Fig. 2). During training, we supervise offset predictions only at points with high predicted
or ground-truth saliency, encouraging the model to focus on task-relevant regions (Fig. 2, shaded
offsets). End-effector orientation, gripper state, and control mode are predicted using additional
learnable tokens. At test time, we apply the predicted offset at the highest-saliency point to obtain
the positional component, and combine it with the predicted orientation and gripper state to form the
full end-effector action xee. We then execute interpolated poses from the current pose xee

t to reach
the keypose xee. Training the keypose policy requires action labels, mode labels, and salient point
annotations. For a given dataset of 20 demos, we post-hoc annotate salient points and modes using
a lightweight interface, which takes ∼15 minutes (see Appendix B.1.1). We train the policy using
the Transformer-based architecture from SPHINX [27].
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Conditioned Keypose Sub-policy. We additionally extend the keypose sub-policy to a salient
point-conditioned variant, HOMER-COND, which optionally accepts an externally provided 3D
keypoint. This enables us to tap into the internet-scale visual and semantic knowledge encoded in
vision-language models (VLMs) by prompting them to localize unseen objects in cluttered scenes,
and conditioning HOMER-COND on the resulting deprojected 3D keypoints (Fig. 2). Taking the
original point cloud, we first construct a distance-weighted saliency map, where each point’s value
is inversely proportional to its distance from the provided keypoint, and the map is normalized to
represent probabilities of saliency. We concatenate this saliency map as an additional channel at the
input. During training, we apply a masked supervision strategy: in 50% of samples, the conditioned
saliency map is masked out, and the model learns to predict both saliency and actions as in the un-
conditioned setting; in the remaining 50%, we pass the unmodified conditioned saliency map and
supervise only the action predictions, with offsets penalized only for points with high ground-truth
saliency in the conditioned map. This formulation allows the policy to leverage external guidance
when available. We further apply visual augmentations during training to promote generalization:
adding randomly generated clusters of points to the input point cloud to mimic distractors, and
omitting the RGB channel entirely to reduce overfitting to object appearance.

Dense Sub-policy. The dense sub-policy πdense is intended for fine-grained manipulation near
salient points, such as inserting, aligning, or grasping objects. The input consists of both third-
person and wrist-mounted RGB images {Ikt ∈ RH×W×3}Kk=1, along with the current end-effector
state xee

t ∈ SE(3) computed via forward kinematics from qt. The dense policy predicts a 6D delta
action ∆xee

t ∈ R6 relative to the current end-effector pose (Fig. 2), as well as the next control mode
mt+1. We obtain the target pose as xee

t+1 = xee
t + ∆xee

t . We instantiate πdense using Diffusion
Policy [42], which in practice predicts a horizon of 16 future actions and executes 8 before re-
planning, rather than predicting a single delta action at each timestep.

Execution. The agent automatically switches between sub-policies based on the current mode mt:

(xee
t+1,mt+1) =

{
πkeypose(Pt) if mt = keypose

πdense({Ikt }) if mt = dense

We assume that m1 corresponds to keypose mode, as nearly all manipulation tasks involve first
reaching before performing fine-grained manipulation. For each timestep thereafter, the predicted
action xee

t+1 is passed to the WBC to solve for and execute qt+1 = W(xee
t+1) (Section 3.2).

HOMER uses the predicted mode mt+1 to select the next sub-policy, enabling dynamic alterna-
tion between reaching and manipulation based on learned transitions.

4 Experiments

We deploy HOMER on the TidyBot++ robot [2], consisting of a 7-DoF Kinova arm and holonomic
base (Fig. 3). With this platform, we evaluate a diverse set of challenging manipulation tasks in both
simulation and real-world to investigate three core questions, focusing on the benefits of HOMER’s
imitation learning (IL) agent, whole-body controller (WBC), and generalization capabilities:

(Q1) Do hybrid actions help with multi-step tasks combining reaching and fine manipulation?
(Q2) Does the WBC action space improve performance compared to decoupled base-arm actions?
(Q3) Can HOMER generalize to novel object instances and spatial configurations?

4.1 Q1 & Q2: Are hybrid actions and whole-body control beneficial?
Baselines. We compare HOMER to baselines varying along two axes: hybrid vs. dense-only
action spaces, and whole-body vs. decoupled base-arm control. Hybrid variants are trained on
data annotated post-hoc with control modes and salient points. WBC baselines are trained from
whole-body teleoperation demonstrations (Fig. 1), while base+arm (B+A) baselines use decoupled
teleoperation, in which the base has to be directly teleoperated separately from the arm [2].

Diffusion Policy (B+A): A dense policy that predicts 10-DoF relative poses: 3-DoF base pose, 6-
DoF end-effector pose, and 1-DoF gripper command. This is comparable to the dense, base-arm
policies used in [2, 34, 55] which notably were trained with 50-200 demos.
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Task Description R-R R-O P LH

Si
m

Cube Pick up cube placed randomly across large workspace " "

Dishwasher Open randomly placed dishwasher door " "

Cabinet Opening Open randomly placed side-hinged cabinet door " "
R

ea
l Pillow Move pillow placed randomly on carpet to target couch position " " " "

TV Remote Grasp and open cabinet, retrieve remote, place on stand " " " "

Sweep Trash Grasp brush & sweep at least 3/4 trash clumps into bin. " " " "

Tab. 1. Mobile Manipulation Tasks. We evaluate our approach on 3 simulated and 3 real-world tasks, cov-
ering randomized robot poses (R-R), randomized object poses (R-O), need for precision (P), and long-horizon
reasoning (LH). Darker checkmarks indicate greater emphasis on the corresponding aspect.

HOMER (B+A): A hybrid policy identical to HOMER, but predicting either a 3-DoF base keypose,
a 6-DoF arm keypose, or a 10-DoF relative pose (as above).

Diffusion Policy (WBC): A dense policy that predicts 7-DoF relative poses: 6-DoF end-effector pose
and 1-DoF gripper command, executed through the WBC.

HOMER (OURS): A hybrid IL agent that predicts either a 6-DoF end-effector keypose or a 6-DoF
relative end-effector pose, plus a 1-DoF gripper command, executed through the WBC.

We expect hybrid action modes and whole-body control (WBC) to each provide advantages in tasks
involving wide workspaces, precise phases, and long horizons. HOMER (B+A) and DP (WBC)
each capture one of these components, and may perform competitively by partially addressing these
challenges. In contrast, DP (B+A), which lacks both hybrid and whole-body action abstractions,
must learn base-arm coordination and long-horizon planning from scratch without structural priors,
making the learning problem significantly harder.

Our benchmark tasks are described in Table 1. We train and evaluate all methods using 20 demon-
strations on 3 simulated and 3 real-world tasks. In Fig. 4, we show illustrations of each task (top)
and benchmark results (bottom). Across tasks, DP (B+A) struggles the most with reaching and
aligning to targets, particularly in tasks like Cube, Dishwasher, Cabinet Opening, and Pillow, with
significant randomization in either initial robot poses (R-R) or object placements (R-O). The dense
end-effector deltas output by the policy often veer off course, leading to failures in reaching pre-
manipulation configurations. DP (WBC) exhibits similar limitations without exploiting keyposes,
but performs slightly better. We posit that the simplified end-effector action space enabled by the

Cube Dishwasher Cabinet Pillow TV Remote Sweep Trash
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Fig. 4. Benchmarking Results. We evaluate HOMER on six simulated and real-world tasks (top) that require
spatial generalization, precision, and long-horizon reasoning. TV Remote and Sweep Trash are particularly chal-
lenging due to their multi-step nature. HOMER consistently outperforms baselines that use only dense actions
or decoupled base-arm control, highlighting the benefits of hybrid action modes and whole-body coordination.
The performance of all methods is best understood through videos available here.
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WBC can be beneficial in the low-data regime. HOMER (B+A) is the strongest baseline, using
base and arm keyposes to move to favorable poses before manipulation. This highlights the value
of our hybrid IL architecture. However, it struggles when smooth base-arm coordination is required
(Cabinet, Dishwasher, Sweep Trash), or when base misalignment affects arm reachability.

HOMER achieves the highest success rates across tasks (Fig. 4). In particular, HOMER is able to
perform challenging maneuvers like manipulating appliances larger than the robot itself (Cabinet,
Dishwasher), perform smooth long-horizon motions (Sweep Trash), execute precise actions (TV
Remote), and generalize with randomization in both object poses and initial robot poses.

4.2 Q3: Generalization to Novel Scenarios

Fig. 5. Generalization Results. HOMER-COND
achieves strong generalization to unseen scenar-
ios by combining salient point conditioning with
point cloud augmentations (videos here). Without
augmentations (HOMER-COND-NoAugs) or condi-
tioning (HOMER), performance drops with distrac-
tors or novel appearances.

To assess generalization, we evaluate HOMER-
COND, a variant of HOMER that (1) conditions
the keypose policy on external salient points from a
VLM, and (2) trains on point clouds without color
and with randomly generated distractor points to
improve visual robustness (Section 3.3). We use
MolMo 7B-D [56], a VLM capable of detect-
ing pixel-level keypoints from language prompts
(e.g., Fig. 2 detect “cabinet handle”), and eval-
uate HOMER-COND on challenging Cube vari-
ants in simulation: (1) randomizing cube sizes,
(2) adding distractors, and (3) retrieving different-
colored cubes. Appendix B.1.2 details the lan-
guage prompts used with MolMo and shows qual-
itative keypoint predictions. Both HOMER and HOMER-COND-NoAugs perform well in simple
settings, but struggle with distractors and novel object appearances. In contrast, HOMER-COND
maintains high performance, highlighting the combined importance of salient point conditioning
and augmentations for handling clutter and unseen objects.

4.3 Qualitative Results: Whole-Body Teleoperation in the Wild
We also qualitatively assess our WBC through teleoperated demonstrations in a real home. The
WBC enables smooth, reliable teleoperation of diverse tasks, including opening and closing cabi-
nets, doors, blinds, and ovens; coordinated motions such as wiping tables and watering plants; and
precise maneuvers like putting away shoes or moving a guitar between stands (Fig. 6). The WBC
optionally avoids collisions between the arm, base, and camera mounts. These results, best viewed
on our website, highlight our WBC’s potential for scalable in-the-wild teleoperation.

Fig. 6. Teleoperated Tasks: We demonstrate a range of teleoperated tasks enabled by our WBC interface,
including coordinated whole-body motions and precise behaviors in real household environments.

5 Conclusion
We present HOMER, a hybrid imitation learning framework for mobile manipulators that combines
spatially grounded policy learning with a whole-body controller for executing end-effector actions.
By switching between keypose and dense control modes, and operating within a lower-dimensional
action space, HOMER enables generalizable and precise manipulation. Through real-world evalu-
ations in a real home, we demonstrate that HOMER can perform diverse, everyday tasks with high
success rates after training with just 20 demonstrations per task. Our results highlight the benefits
of hybrid control and whole-body execution for sample-efficient and generalizable mobile manip-
ulation. We believe HOMER provides a foundation for scalable deployment of assistive robots in
real-world, human-centered environments.
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6 Limitations and Future Work
While this work demonstrates the benefits of whole-body control (WBC) and hybrid action repre-
sentations for mobile manipulation, several limitations remain, as described below.

Collision avoidance. First, although our WBC accounts for self-collisions and posture regulariza-
tion, it does not consider collisions with the external environment. Recent works such as [57] have
proposed point-cloud-based collision avoidance for tabletop manipulators, and incorporating simi-
lar constraints into our whole-body controller could enable safe operation in tightly constrained or
cluttered environments. We leave this integration as an exciting direction for future work.

Active perception. We use fixed base-mounted and wrist-mounted camera viewpoints that were
manually chosen to cover a wide range of tasks. However, the question of which viewpoints are
most useful remains underexplored. With a mobile platform, we are particularly excited about in-
corporating active perception to select or adapt viewpoints dynamically during task execution.

Navigation. We note that this work focuses on manipulation and does not address navigation.
In practice, navigation is highly complementary and could be interleaved with our manipulation
policies to enable truly long-horizon mobile manipulation.

Multi-task. Lastly, the policies explored in this work are all single-task and demonstrate promising
performance in the limited data regime. In the future, we are excited about scaling HOMER to the
multi-task setting, and scaling up teleoperation using our interface. A benefit of our action space is
that it simplifies to end-effector actions, which opens up the possibility of co-training on other (both
mobile and non-mobile) multi-task datasets in the future.
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Appendix: Learning In-the-Wild Mobile Manipulation via
Hybrid Imitation and Whole-Body Control

A Whole-Body Controller Implementation Details
We implement the whole-body controller (WBC) described in Section 3.2 using MuJoCo [52] and
the mink inverse kinematics library [53].

Model and Tasks. We load the MuJoCo model of the robot, with two camera mounts attached to
the base, from an MJCF file. The WBC includes the following tasks:

• End-effector pose task: A 6-DoF frame task is defined at the end-effector, with cost
weights Wee = 1.0 for both position and orientation tracking.

• Posture task: A quadratic penalty encourages the robot to remain near a neutral joint
configuration. We set Wposture = 2× 10−3 for all non-base joints. The target configuration
corresponds to a tucked arm posture used across all tasks.

• Base damping task: A damping cost of Wdamping = 1.5 is applied to base velocities to
prevent excessive motion.

Constraints. We enforce the following limits during IK:

• Velocity limits: Base velocities are capped at (0.5, 0.5, π/2) m/s and rad/s. Arm joints are
limited to approximately 80◦/s for the first four joints and 140◦/s for the wrist joints.

• Joint position limits: All joint limits of the robot are enforced.
• (Optional) Collision limits: We define geometric collision pairs between the arm, gripper,

base, and camera mounts, with a 2 cm safety margin and 10 cm detection range. This
constraint was not needed in our benchmarking experiments (Fig. 4) as our placement of
cameras was not at high collision risk with the whole-body motions, but remains available
as a flexible add-on and is demonstrated during teleoperation (Fig. 6).

Solver parameters. We solve the IK problem using mink’s QP solver with a Levenberg-Marquardt
damping factor of 1.0. The solver runs for up to 20 iterations with a convergence threshold of 10−4

for both position and orientation errors. Joint velocities are integrated using Euler integration.

Usage. At runtime, the solver takes as input a desired end-effector pose and the current joint
configuration, and returns a joint position command by solving the constrained IK problem and
integrating the resulting joint velocities. All weights and thresholds are fixed and reused across all
tasks without any per-task tuning.

B Hybrid IL Implementation Details
B.1 Keypose Policy
We implement the keypose policy using a Transformer that operates on point clouds to predict a
6-DoF end-effector pose. The policy first classifies per-point saliency and then regresses a per-point
offset to the target end-effector position. Rotation (as quaternions), gripper state, and control mode
are predicted using additional learnable tokens. The network architecture uses 6 Transformer layers
with 512-dimensional embeddings and 8 attention heads. No positional encodings are used, as the
point cloud input is unordered.
Following [27], the full training objective is a simple unweighted sum of the following: (1) salient
point classification loss, (2) offset regression loss on high-saliency points, (3) MSE on normalized
quaternions, (4) binary cross-entropy on gripper state, and (5) cross-entropy loss on control mode.
We apply temporal augmentation by including intermediate steps from the controller’s motion tra-
jectory toward each annotated keypose. For each waypoint segment, we train not only on the initial
observation but also on a prefix of the interpolated segment. We use α = 0.2, meaning we sample
the first 20% of timesteps in the segment. This increases the data sixfold in most cases and improves
performance across tasks.
Additionally, we apply spatial augmentations by randomly translating the entire point cloud and
corresponding action label within a 5 cm cube. No vision-based pre-processing or segmentation is
used beyond cropping to workspace bounds. We train for 2000 epochs using Adam with a base
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learning rate of 1e−4 and cosine decay, gradient clipping (max norm 1), dropout of 0.1, batch size
64, and exponential moving average (EMA) with decay annealed up to 0.9999. All evaluations use
the final checkpoint.

B.1.1 Data Annotation
Training the keypose policy requires labels for modes and salient points. We provide these annota-
tions on teleoperated demonstrations using a lightweight custom interface. As shown in Fig. 7 and
Fig. 8, annotators first segment each demonstration into keypose and dense control modes by click-
ing and dragging on a timeline. For frames labeled as keypose, annotators then specify a salient point
by clicking on a task-relevant location in the 3D point cloud interface (Fig. 9). Each demonstration
typically contains 1–3 such annotations, and full annotation of a 20-demo dataset takes around 15
minutes. These labels supervise both the saliency classification and offset regression components of
the keypose policy.

Fig. 7. HOMER Mode Annotation Example: To train HOMER, we annotate control modes using
a custom UI that supports frame-by-frame scrubbing and Shift + Click/Drag segmentation. For the
Cabinet task shown above, we label the reaching motion as keypose (orange) and the grasping and
opening phase as dense (gray). A demonstration of this annotation process is available here.
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Fig. 8. HOMER (B+A) Mode Annotation Example: Above we visualize mode annotation on a
Cabinet demo collected with separate base+arm teleoperation, with which to train HOMER (B+A).
The demonstration consists of first driving the base towards the cabinet (keypose), reaching the arm
towards the handle (keypose), and finally grasping and opening the cabinet (dense). We visualize
the base (red) or arm (green) control mode for more intuitive labeling.
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Fig. 9. Salient Point Annotation Interface. For frames labeled as keypose using the Mode Anno-
tation Interface Fig. 7, demonstrators can specify a task-relevant salient point (i.e. the handle in the
Cabinet task) by simply clicking a desired point within the reconstructed point cloud (video here).
Together, these lightweight interfaces provide all the additional supervision necessary to train the
keypose policy.

B.1.2 Salient-Point Conditioned Keypose Policy

To improve robustness and generalization, we extend the keypose policy to accept externally speci-
fied salient points rather than learning to predict them from scratch. These points are encoded as a
soft saliency map over the input point cloud and allow the keypose model to attend to a pre-specified
point.
We train this variant with a masked supervision strategy. 50% of the time, we include the saliency
map, and the policy learns to predict actions relative to given salient points when available. In the
other 50%, we mask out the saliency map, and the model learns to predict the map in addition to
the action, in order to encourage the model to learn useful features of the input point cloud. We
also apply data augmentations to the input point clouds, including removal of color channels and
injection of distractor points, to improve visual robustness in cluttered scenes.

Fig. 10. Extracting Salient Points from MolMo. In the Cube generalization tasks (Section 4.2),
we use MolMo 7B-D [56] to detect task-relevant keypoints (●) from third-person images given
language prompts like “point to the green cube.” The predicted pixel is backprojected into the 3D
point cloud and used as the salient point input to the keypose policy. The top row shows correct
selection among distractors; the bottom row shows generalization to a novel red cube.

In our experiments (Section 4.2), we consider variants of the Cube task, where the goal is to pick
up a cube subject to different environment variations. Salient points are extracted using MolMo 7B-
D [56], a vision-language model that returns pixel-level keypoints given a language prompt. We use
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the prompt “point to the <green/red> cube,” and backproject the returned pixel into 3D to obtain
the salient point (Fig. 10).
While we use a fixed prompt for this simple, single-object task, our architecture is agnostic to the
exact number of salient points and which objects or object parts they refer to. Future work can
explore more complex settings that involve multiple objects, dynamic keypoint selection, and more
general VLM prompting strategies that evolve with the task phase.

B.2 Dense Policy
We implement the dense policy of HOMER using a diffusion model that predicts fine-grained delta
end-effector motions. Following [42], we use a ResNet-18 encoder to process RGB images and
append proprioceptive features before passing them to a 1D convolutional UNet denoiser. The model
is trained using DDPM to predict noise added to delta action sequences.
At test-time, the policy predicts a future horizon of 16 actions and executes the first 8 before replan-
ning. Observations include third-person and wrist-mounted RGB images. We train the model using
the Adam optimizer with cosine learning rate decay and weight decay regularization. The policy
used for evaluation is the final saved checkpoint.
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